Regression in random design and Bayesian warped wavelets estimators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression in random design and Bayesian warped wavelets estimators

In this paper we deal with the regression problem in a random design setting. We investigate asymptotic optimality under minimax point of view of various Bayesian rules based on warped wavelets and show that they nearly attain optimal minimax rates of convergence over the Besov smoothness class considered. Warped wavelets have been introduced recently, they offer very good computable and easyto...

متن کامل

Regression in random design and warped wavelets

We consider the problem of estimating an unknown function f in a regression setting with random design. Instead of expanding the function on a regular wavelet basis, we expand it on the basis {ψjk(G), j, k} warped with the design. This allows to perform a very stable and computable thresholding algorithm. We investigate the properties of this new basis. In particular, we prove that if the desig...

متن کامل

Adaptive warped kernel estimators

In this work, we develop a method of adaptive nonparametric estimation, based on "warped" kernels. The aim is to estimate a real-valued function s from a sample of random couples (X,Y ). We deal with transformed data (Φ(X), Y ), with Φ a one-to-one function, to build a collection of kernel estimators. The data-driven bandwidth selection is done with a method inspired by Goldenshluger and Lepski...

متن کامل

Robust Estimators for Random Coefficient Regression Models

Random coefficient regression models have received considerable attention, especially from econometricians. Previous work has assumed that the coefficients have normal distributions. The variances of the coefficients have, in previous papers, been estimated by maximum likelihood or by least squares methodology applied to the squared residuals from a preliminary (unweighted) fit. Maximum likelih...

متن کامل

Random projections for Bayesian regression

This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire d-dimensional distribution is approximately preserved under random projections by reducing the number of data points from n to k ∈ O(poly(d/ε)) in the case n d. Under mild assumptions, we prove that evaluating a Gaussian likeliho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2009

ISSN: 1935-7524

DOI: 10.1214/09-ejs466